Search results for "Myotonin-Protein Kinase"
showing 9 items of 9 documents
Expanded CCUG repeat RNA expression in Drosophila heart and muscle trigger Myotonic Dystrophy type 1-like phenotypes and activate autophagocytosis ge…
2016
AbstractMyotonic dystrophies (DM1–2) are neuromuscular genetic disorders caused by the pathological expansion of untranslated microsatellites. DM1 and DM2, are caused by expanded CTG repeats in the 3′UTR of the DMPK gene and CCTG repeats in the first intron of the CNBP gene, respectively. Mutant RNAs containing expanded repeats are retained in the cell nucleus, where they sequester nuclear factors and cause alterations in RNA metabolism. However, for unknown reasons, DM1 is more severe than DM2. To study the differences and similarities in the pathogenesis of DM1 and DM2, we generated model flies by expressing pure expanded CUG ([250]×) or CCUG ([1100]×) repeats, respectively, and compared …
In vivo discovery of a peptide that prevents CUG-RNA hairpin formation and reverses RNA toxicity in myotonic dystrophy models
2011
6 pages, 5 figures. PMID:21730182[PubMed] PMCID: PMC3141925[Available on 2012/1/19]
RNA-mediated therapies in myotonic dystrophy
2018
Myotonic dystrophy 1 (DM1) is a multisystemic neuromuscular disease caused by a dominantly inherited 'CTG' repeat expansion in the gene encoding DM Protein Kinase (DMPK). The repeats are transcribed into mRNA, which forms hairpins and binds with high affinity to the Muscleblind-like (MBNL) family of proteins, sequestering them from their normal function. The loss of function of MBNL proteins causes numerous downstream effects, primarily the appearance of nuclear foci, mis-splicing, and ultimately myotonia and other clinical symptoms. Antisense and other RNA-mediated technologies have been applied to target toxic-repeat mRNA transcripts to restore MBNL protein function in DM1 models, such as…
In silico discovery of substituted pyrido[2,3-d]pyrimidines and pentamidine-like compounds with biological activity in myotonic dystrophy models
2016
Myotonic dystrophy type 1 (DM1) is a rare multisystemic disorder associated with an expansion of CUG repeats in mutant DMPK (dystrophia myotonica protein kinase) transcripts; the main effect of these expansions is the induction of pre-mRNA splicing defects by sequestering muscleblind-like family proteins (e.g. MBNL1). Disruption of the CUG repeats and the MBNL1 protein complex has been established as the best therapeutic approach for DM1, hence two main strategies have been proposed: targeted degradation of mutant DMPK transcripts and the development of CUG-binding molecules that prevent MBNL1 sequestration. Herein, suitable CUG-binding small molecules were selected using in silico approach…
Towards development of a statistical framework to evaluate myotonic dystrophy type 1 mRNA biomarkers in the context of a clinical trial
2020
AbstractMyotonic dystrophy type 1 (DM1) is a rare genetic disorder, characterised by muscular dystrophy, myotonia, and other symptoms. DM1 is caused by the expansion of a CTG repeat in the 3’-untranslated region of DMPK. Longer CTG expansions are associated with greater symptom severity and earlier age at onset. The primary mechanism of pathogenesis is thought to be mediated by a gain of function of the CUG-containing RNA, that leads to trans-dysregulation of RNA metabolism of many other genes. Specifically, the alternative splicing (AS) and alternative polyadenylation (APA) of many genes is known to be disrupted. In the context of clinical trials of emerging DM1 treatments, it is important…
Myotonic dystrophy: candidate small molecule therapeutics
2017
Myotonic dystrophy type 1 (DM1) is a rare multisystemic neuromuscular disorder caused by expansion of CTG trinucleotide repeats in the noncoding region of the DMPK gene. Mutant DMPK transcripts are toxic and alter gene expression at several levels. Chiefly, the secondary structure formed by CUGs has a strong propensity to capture and retain proteins, like those of the muscleblind-like (MBNL) family. Sequestered MBNL proteins cannot then fulfill their normal functions. Many therapeutic approaches have been explored to reverse these pathological consequences. Here, we review the myriad of small molecules that have been proposed for DM1, including examples obtained from computational rational …
Increased autophagy and apoptosis contribute to muscle atrophy in a myotonic dystrophy type 1 Drosophila model
2015
ABSTRACT Muscle mass wasting is one of the most debilitating symptoms of myotonic dystrophy type 1 (DM1) disease, ultimately leading to immobility, respiratory defects, dysarthria, dysphagia and death in advanced stages of the disease. In order to study the molecular mechanisms leading to the degenerative loss of adult muscle tissue in DM1, we generated an inducible Drosophila model of expanded CTG trinucleotide repeat toxicity that resembles an adult-onset form of the disease. Heat-shock induced expression of 480 CUG repeats in adult flies resulted in a reduction in the area of the indirect flight muscles. In these model flies, reduction of muscle area was concomitant with increased apopto…
Myotonic dystrophy associated expanded CUG repeat muscleblind positive ribonuclear foci are not toxic to Drosophila
2005
Myotonic dystrophy type 1 is an autosomal dominant disorder associated with the expansion of a CTG repeat in the 3 0 untranslated region (UTR) of the DMPK gene. Recent data suggest that pathogenesis is predominantly mediated by a gain of function of the mutant transcript. In patients, these expanded CUG repeat-containing transcripts are sequestered into ribonuclear foci that also contain the muscleblind-like proteins. To provide further insights into muscleblind function and the pathogenesis of myotonic dystrophy, we generated Drosophila incorporating CTG repeats in the 3 0 -UTR of a reporter gene. As in patients, expanded CUG repeats form discrete ribonuclear foci in Drosophila muscle cell…
Sense and Antisense DMPK RNA Foci Accumulate in DM1 Tissues during Development.
2015
International audience; Myotonic dystrophy type 1 (DM1) is caused by an unstable expanded CTG repeat located within the DMPK gene 3'UTR. The nature, severity and age at onset of DM1 symptoms are very variable in patients. Different forms of the disease are described, among which the congenital form (CDM) is the most severe. Molecular mechanisms of DM1 are well characterized for the adult form and involve accumulation of mutant DMPK RNA forming foci in the nucleus. These RNA foci sequester proteins from the MBNL family and deregulate CELF proteins. These proteins are involved in many cellular mechanisms such as alternative splicing, transcriptional, translational and post-translational regul…